Modelica Library for Balloon Assisted Unmanned Aerial Vehicle

Pavan P, ModeliCon InfoTech LLP
Puneet AC, ModeliCon InfoTech LLP
Peter Fritzson, Linköping University
Gunnar Dahlbäck, GI Lift
Mikael Hult, GI Lift,
Martin Sjölund, Linköping University
Sunil Shah, ModeliCon InfoTech LLP
Agenda

1. Introduction to Balloon Assisted Unmanned Aerial Vehicle (BUAV)
2. Components of BUAV
3. Integration Systems
4. Simulation Case Study
5. Next Steps
Today’s clearcut approach – damages ground
Increased demands on future forestry

- Improved economics
 - Big forestry machines are expensive and have to run 24h
- Environmental and climate demands on less fossil fuel usage (avoid diesel)
- Handle challenges:
 - Increased climate change
 - Avoid damage on land and water
 - Risk of forest fire
- Possibilities for efficient forestry without clearcut areas
 - For example, close to cities
- Increased efficiency
 - In productive forests in areas which are difficult to access
- More environmentally friendly and robust forestry – pick only selected trees, allow a mix of different trees
An autonomous ground independent lifting system

- **Aerostat**: Balances the system weight without load.
- **Multicopter**: Provides lift power without load. Maneuvering and control.
- **Energy package (batteries, also hydrogen in balloon)**
- **Storage of energy**
- **Grapple and sensors for localizing tree trunk**

Patent application has been made for this system.
Transportation of timber

- Timber
- Branches
- Whole tree
Early Prototype Demo Flight by GI LIFT AB
Outside Linköping December 2019
Introduction to Balloon Assisted Unmanned Aerial Vehicle Model (BUAV)
Introduction

- Balloon assisted UAV (Unmanned Aerial vehicle) is an integrated device having a hydrogen/helium balloon attached to a multicopter.
- BUAV can be used to transport heavy objects, high altitude surveillance, provide extended flight time for UAV and so on.
- Multibody BUAVSystems library has been developed in Modelica/ OpenModelica.
- This library can be used for:
 - Stability Analysis of the UAV and Control System Design
 - Stability Analysis of the Payload including oscillationa
 - Path Planning- Time, Power and Energy
 - Load Analysis
Components of BUAV Systems
Library Architecture

AerostatSystem simulates the drag and lift dynamics of a balloon filled with a buoyant gas.

UAVSystem model captures the force and torque exerted on the USV for a given input profile.

PayloadSystem model captures the dynamics of a hanging payload in motion.
Library Architecture

- **LinearMotion3D** takes velocities in 3 dimensions and generates the combined force input.
- **PathPlanner** and **PathData** provide the velocity profile inputs based on user waypoint selection.
- **Configuration** model takes all parametric inputs for the system like UAV, payload mass, Balloon dimensions, payload cable length etc.

OpenModelica Library- Extending the MultiBody Library
Example Models

IntegratedSystem example model calculates the total force and torque exerted on the uav and the payload oscillation for a predefined path input.

StateEstimation example model is an integrated system of balloon, UAV and the payload which *stimulates how the system moves* for a given set of UAV propeller inputs.
IntegratedSystem
Architecture of IntegratedSystem

1. User
 - User Input - Parameters (text file)
 - User Input - Waypoints (csv file)

2. Path Generator
3. Text File for Path
4. Path Planner
5. Configurations
6. IntegratedSystem
 - Aerostat System
 - UAV System
 - Payload System

7. 3D Motion
8. Visualisation

Legend:
- External resources
- Modelica models
- Python script
- Output
Workflow of Integrated System

Parameters.txt
- maxHorizontalVelocity=10
- maxVerticalVelocity=1
- horDelay=2
- verDelay=2
- windVelocity=4
- windDirection=0
- uavMass=55
- payloadMassOnward=50
- deadWeight=6
- dragCoefficientSphere=0.47
- gasDensity=0.08988
- payloadRadius=0.2
- payloadLength=0.5
- dragCoefficientCylinder=0
- cableLength=1
- aerostatMass=70
- aerostatRadius=2.7
- airDensity=1.23

Waypoints.csv
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
Plots of Integrated System

Coordinate Plot

Force Plot

Payload Oscillation Plot

Energy Plot
Simulation Case Studies
BUAV vs UAV Simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAV Mass</td>
<td>35</td>
<td>kg</td>
</tr>
<tr>
<td>Payload Mass</td>
<td>50</td>
<td>kg</td>
</tr>
<tr>
<td>Maximum lift velocity</td>
<td>2</td>
<td>m/s</td>
</tr>
<tr>
<td>Maximum horizontal velocity</td>
<td>3</td>
<td>m/s</td>
</tr>
<tr>
<td>Balloon mass with harness</td>
<td>76.6</td>
<td>kg</td>
</tr>
<tr>
<td>Balloon radius</td>
<td>3.1</td>
<td>m</td>
</tr>
<tr>
<td>Balloon drag coefficient</td>
<td>0.47</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Waypoints

Parameters
BUAV vs UAV Simulation

- **70% reduction in power consumption**

- **46% reduction in Max Thrust required by UAV**
Next Steps

- Control System Design
- Flight Controller
- Payload Controller
- Path Optimization
- Interactive Simulation

Project Jointly Developed by GI Lift, Linköping University, ModeliCon InfoTech LLP and funded by Linköping University
Thank You